Bailout Fold
This page is part of a series on Arithmetic Made Difficult.
This post is literate Haskell; you can load the source into GHCi and play along.
{-# LANGUAGE NoImplicitPrelude #-}
module BailoutFold (
bfoldr, _test_bfoldr, main_bfoldr
) where
import Testing
import Booleans
import Tuples
import DisjointUnions
import NaturalNumbers
import Lists
import HeadAndTail
In this post we’ll develop a list-flavored version of bailout recursion.
Let \(A\), \(B\), and \(C\) be sets. Suppose we have mappings \[\delta : B \rightarrow C,\] \[\beta : A \times \lists{A} \rightarrow B \rightarrow \bool,\] \[\psi : A \times \lists{A} \times B \rightarrow C,\] and \[\omega : A \times \lists{A} \times B \rightarrow B.\] Then there is a unique mapping \(\Theta : \lists{A} \times B \rightarrow C\) such that \[\Theta(\nil,u) = \delta(u)\] and \[\Theta(\cons(a,x),u) = \bif{\beta(a,x,u)}{\psi(a,x,u)}{\Theta(x,\omega(a,x,u))}.\] We denote this \(\Theta\) by \(\bfoldr(\delta)(\beta)(\psi)(\omega)\).
Define \(\varepsilon : B \times \lists{A} \rightarrow C\) by \[\varepsilon(u,x) = \delta(u)\] and \(\varphi : A \times C^{B \times \lists{A}} \rightarrow C^{B \times \lists{A}}\) by \[\varphi(a,g)(u,x) = \bif{\beta(a,\tail(x),u)}{\psi(a,\tail(x),u)}{g(\omega(a,\tail(x),u),\tail(x))},\] and let \(\Theta : \lists{A} \times B \rightarrow C\) be given by \[\Theta(x,u) = \foldr(\varepsilon)(\varphi)(x)(u,x).\] Note that \[\begin{eqnarray*} & & \Theta(\nil,u) \\ & = & \foldr(\varepsilon)(\varphi)(\nil)(u,\nil) \\ & \href{/posts/arithmetic-made-difficult/Lists.html#def-foldr-nil} = & \varepsilon(u,\nil) \\ & = & \delta(u) \end{eqnarray*}\] and \[\begin{eqnarray*} & & \Theta(\cons(a,x),u) \\ & = & \foldr(\varepsilon)(\varphi)(\cons(a,x))(u,\cons(a,x)) \\ & \href{/posts/arithmetic-made-difficult/Lists.html#def-foldr-cons} = & \varphi(a,\foldr(\varepsilon)(\varphi)(x))(u,\cons(a,x)) \\ & = & \bif{\beta(a,\tail(\cons(a,x)),u)}{\psi(a,\tail(\cons(a,x)),u)}{\foldr(\varepsilon)(\varphi)(x)(\omega(a,\tail(\cons(a,x)),u),\tail(\cons(a,x)))} \\ & = & \bif{\beta(a,x,u)}{\psi(a,x,u)}{\foldr(\varepsilon)(\varphi)(x)(\omega(a,x,u),x)} \\ & = & \bif{\beta(a,x,u)}{\psi(a,x,u)}{\Theta(x,\omega(a,x,u))} \end{eqnarray*}\] as needed. Suppose \(\Psi : \lists{A} \times B \rightarrow C\) also satisfies these equations; we show that \(\Psi = \Theta\) by list induction on \(x\). For the base case \(x = \nil\), we have \[\begin{eqnarray*} & & \Psi(\nil,u) \\ & = & \delta(u) \\ & = & \Theta(\nil,u) \end{eqnarray*}\] as needed. For the inductive step, suppose the equality holds for all \(u\) for some \(x\), and let \(a \in A\). Now \[\begin{eqnarray*} & & \Psi(\cons(a,x),u) \\ & = & \bif{\beta(a,x,u)}{\psi(a,x,u)}{\Psi(x,\omega(a,x,u))} \\ & = & \bif{\beta(a,x,u)}{\psi(a,x,u)}{\Theta(x,\omega(a,x,u))} \\ & = & \Theta(\cons(a,x),u) \end{eqnarray*}\] so that \(\Psi = \Theta\).
Implementation
We can implement \(\bfoldr\) using the definition or the universal property.
bfoldr, bfoldr'
:: (List t)
=> (b -> c)
-> (a -> t a -> b -> Bool)
-> (a -> t a -> b -> c)
-> (a -> t a -> b -> b)
-> t a -> b -> c
bfoldr' delta beta psi omega x u = foldr epsilon phi x (tup u x)
where
epsilon (Pair b _) = delta b
phi a g (Pair b y) = if beta a (tail y) b
then psi a (tail y) b
else g (tup (omega a (tail y) b) (tail y))
bfoldr delta beta psi omega z u = case uncons z of
Left () -> delta u
Right (Pair a x) -> if beta a x u
then psi a x u
else bfoldr delta beta psi omega x (omega a x u)
We should check that these are equivalent.
_test_bfoldr_equiv :: (List t, Equal (t a), Equal a, Equal c)
=> t a -> b -> c
-> Test ((b -> c) -> (a -> t a -> b -> Bool) -> (a -> t a -> b -> c) -> (a -> t a -> b -> b) -> t a -> b -> Bool)
_test_bfoldr_equiv _ _ _ =
testName "bfoldr(delta,beta,psi,omega)(x,u) == bfoldr'(delta,beta,psi,omega)(x,u)" $
\delta beta psi omega x u -> eq
(bfoldr delta beta psi omega x u)
(bfoldr' delta beta psi omega x u)
Testing
Suite:
_test_bfoldr ::
( TypeName a, Show a, Equal a, Arbitrary a, CoArbitrary a
, TypeName (t a), List t, Equal (t a), Arbitrary (t a), Show (t a), CoArbitrary (t a)
, CoArbitrary b, CoArbitrary c, Arbitrary b, Arbitrary c, Show b, Equal c
, TypeName b, TypeName c
) => Int -> Int -> t a -> b -> c -> IO ()
_test_bfoldr size cases t b c = do
testLabel3 "bfoldr" t b c
let args = testArgs size cases
runTest args (_test_bfoldr_equiv t b c)
Main:
main_bfoldr :: IO ()
main_bfoldr = do
_test_bfoldr 50 1000 (nil :: ConsList Bool) (zero :: Unary) (zero :: Unary)
_test_bfoldr 50 1000 (nil :: ConsList Unary) (zero :: Unary) (zero :: Unary)
_test_bfoldr 50 1000 (nil :: ConsList Bool) (true :: Bool) (zero :: Unary)
_test_bfoldr 50 1000 (nil :: ConsList Unary) (true :: Bool) (zero :: Unary)