Implies
This page is part of a series on Arithmetic Made Difficult.
This post is literate Haskell; you can load the source into GHCi and play along.
{-# LANGUAGE NoImplicitPrelude #-}
module Implies (
impl, _test_impl, main_impl
) where
import Testing
import Booleans
import Not
import And
import Or
Next we define implication on booleans.
We define \(\bimpl : \bool \rightarrow \bool \rightarrow \bool\) by \[\bimpl(p,q) = \bif{p}{q}{\btrue}.\]
In Haskell:
\(\bimpl\) is equivalent to an \(\bor\).
For all \(p,q \in \bool\), we have \[\bimpl(p,q) = \bor(\bnot(p),q).\]
If \(p = \bfalse\), we have \[\begin{eqnarray*} & & \bimpl(\bfalse,q) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#def-implies} = & \bif{\bfalse}{q}{\btrue} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-false} = & \btrue \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \bor(\btrue,q) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-false} = & \bor(\bnot(\bfalse),q) \end{eqnarray*}\] as needed. Suppose then that \(p = \btrue\). Then \[\begin{eqnarray*} & & \bimpl(\btrue,q) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#def-implies} = & \bif{\btrue}{q}{\btrue} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-true} = & q \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \bor(\bfalse,q) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-true} = & \bor(\bnot(\btrue),q) \end{eqnarray*}\] as needed.
\(\bfalse\) implies anything.
If \(p \in \bool\), we have \(\bimpl(\bfalse,p) = \btrue\).
We have \[\begin{eqnarray*} & & \bimpl(\bfalse,p) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(\bfalse),p) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-false} = & \bor(\btrue,p) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \btrue \end{eqnarray*}\] as claimed.
\(\bfalse\) interacts with \(\bimpl\) in the right argument.
If \(p \in \bool\), we have \(\bimpl(p,\bfalse) = \bnot(p)\).
We have \[\begin{eqnarray*} & & \bimpl(p,\bfalse) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(p),\bfalse) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-right} = & \bnot(p) \end{eqnarray*}\] as claimed.
\(\btrue\) is left-neutral.
For all \(p \in \bool\) we have \(\bimpl(\btrue,p) = p\).
We have \[\begin{eqnarray*} & & \bimpl(\btrue,p) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(\btrue),p) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-true} = & \bor(\bfalse,p) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & p \end{eqnarray*}\] as claimed.
\(\btrue\) is right-absorptive.
If \(p \in \bool\), we have \(\bimpl(p,\btrue) = \btrue\).
We have \[\begin{eqnarray*} & & \bimpl(p,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(p),\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-right} = & \btrue \end{eqnarray*}\] as claimed.
\(\bimpl\) is… idemp-constant? Not sure what to call this.
If \(p \in \bool\) we have \(\bimpl(p,p) = \btrue\).
If \(p = \btrue\), we have \[\begin{eqnarray*} & & \bimpl(\btrue,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(\btrue),\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-right} = & \btrue \end{eqnarray*}\] as claimed. If \(p = \bfalse\), we have \[\begin{eqnarray*} & & \bimpl{\bfalse,\bfalse} \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \btrue \end{eqnarray*}\] as claimed.
\(\bimpl\) is antisymmetric.
For all \(p,q \in \bool\) we have \(\bor(\bimpl(p,q),\bimpl(q,p))\).
We have \[\begin{eqnarray*} & & \bor(\bimpl(p,q),\bimpl(q,p)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bor(\bnot(p),q),\bimpl(q,p)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bor(\bnot(p),q),\bor(\bnot(q),p)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-associative} = & \bor(\bnot(p),\bor(q,\bor(\bnot(q),p))) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-associative} = & \bor(\bnot(p),\bor(\bor(q,\bnot(q)),p)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-not} = & \bor(\bnot(p),\bor(\btrue,p)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \bor(\bnot(p),\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-right} = & \btrue \end{eqnarray*}\] as needed.
\(\bimpl\) is left-commutative.
For all \(p,q,r \in \bool\) we have \[\bimpl(p,\bimpl(q,r)) = \bimpl(q,\bimpl(p,r)).\]
We have \[\begin{eqnarray*} & & \bimpl(p,\bimpl(q,r)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(p),\bimpl(q,r)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(p),\bor(\bnot(q),r)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-associative} = & \bor(\bor(\bnot(p),\bnot(q)),r) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-commutative} = & \bor(\bor(\bnot(q),\bnot(p)),r) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-associative} = & \bor(\bnot(q),\bor(\bnot(p),r)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(q),\bimpl(p,r)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bimpl(q,\bimpl(p,r)) \end{eqnarray*}\] as claimed.
\(\bimpl\) has a kind of transitivity.
For all \(p,q,r \in \bool\) we have \[\bimpl(\bimpl(p,q),\bimpl(\bimpl(q,r),\bimpl(p,r))).\]
If \(p = \bfalse\), we have \[\begin{eqnarray*} & & \bimpl(\bimpl(p,q),\bimpl(\bimpl(q,r),\bimpl(p,r))) \\ & \let{p = \bfalse} = & \bimpl(\bimpl(\bfalse,q),\bimpl(\bimpl(q,r),\bimpl(\bfalse,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \bimpl(\btrue,\bimpl(\bimpl(q,r),\bimpl(\bfalse,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \bimpl(\btrue,\bimpl(\bimpl(q,r),\btrue)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(\bimpl(q,r),\btrue) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(\bimpl(q,r)),\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-right} = & \btrue \end{eqnarray*}\] as claimed. If \(p = \btrue\), we have \[\begin{eqnarray*} & & \bimpl(\bimpl(p,q),\bimpl(\bimpl(q,r),\bimpl(p,r))) \\ & \let{p = \btrue} = & \bimpl(\bimpl(\btrue,q),\bimpl(\bimpl(q,r),\bimpl(\btrue,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(q,\bimpl(\bimpl(q,r),\bimpl(\btrue,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(q,\bimpl(\bimpl(q,r),r)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-left-commutative} = & \bimpl(\bimpl(q,r),\bimpl(q,r)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-self} = & \btrue \end{eqnarray*}\] as claimed.
\(\bimpl\) has a kind of distributivity.
For all \(p,q,r \in \bool\) we have \[\bimpl(\bimpl(p,\bimpl(q,r)),\bimpl(\bimpl(p,q),\bimpl(p,r))).\]
If \(p = \bfalse\), we have \[\begin{eqnarray*} & & \bimpl(\bimpl(p,\bimpl(q,r)),\bimpl(\bimpl(p,q),\bimpl(p,r))) \\ & \let{p = \bfalse} = & \bimpl(\bimpl(\bfalse,\bimpl(q,r)),\bimpl(\bimpl(\bfalse,q),\bimpl(\bfalse,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \bimpl(\btrue,\bimpl(\bimpl(\bfalse,q),\bimpl(\bfalse,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \bimpl(\btrue,\bimpl(\btrue,\bimpl(\bfalse,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \bimpl(\btrue,\bimpl(\btrue,\btrue)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(\btrue,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \btrue \end{eqnarray*}\] Suppose instead that \(p = \btrue\). Now \[\begin{eqnarray*} & & \bimpl(\bimpl(p,\bimpl(q,r)),\bimpl(\bimpl(p,q),\bimpl(p,r))) \\ & \let{p = \btrue} = & \bimpl(\bimpl(\btrue,\bimpl(q,r)),\bimpl(\bimpl(\btrue,q),\bimpl(\btrue,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(\bimpl(q,r),\bimpl(\bimpl(\btrue,q),\bimpl(\btrue,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(\bimpl(q,r),\bimpl(q,\bimpl(\btrue,r))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(\bimpl(q,r),\bimpl(q,r)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-self} = & \btrue \end{eqnarray*}\] as claimed.
\(\bimpl\) interacts with \(\band\).
For all \(p,q,r,s \in \bool\), if \(\bimpl(p,r)\) and \(\bimpl(q,s)\), then \(\bimpl(\band(p,q),\band(r,s))\).
If \(p = \bfalse\), we have \[\begin{eqnarray*} & & \bimpl(\band(\bimpl(p,r),\bimpl(q,s)),\bimpl(\band(p,q),\band(r,s))) \\ & \let{p = \bfalse} = & \bimpl(\band(\bimpl(\bfalse,r),\bimpl(q,s)),\bimpl(\band(\bfalse,q),\band(r,s))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \bimpl(\band(\btrue,\bimpl(q,s)),\bimpl(\band(\bfalse,q),\band(r,s))) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-false-left} = & \bimpl(\band(\btrue,\bimpl(q,s)),\bimpl(\bfalse,\band(r,s))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \bimpl(\band(\btrue,\bimpl(q,s)),\btrue) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-or} = & \bor(\bnot(\band(\btrue,\bimpl(q,s))),\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-right} = & \btrue \end{eqnarray*}\] as claimed. suppose \(p = \btrue\). If \(r = \bfalse\), we have \[\begin{eqnarray*} & & \bimpl(\band(\bimpl(p,r),\bimpl(q,s)),\bimpl(\band(p,q),\band(r,s))) \\ & \let{p = \btrue} = & \bimpl(\band(\bimpl(\btrue,r),\bimpl(q,s)),\bimpl(\band(\btrue,q),\band(r,s))) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-left} = & \bimpl(\band(\bimpl(\btrue,r),\bimpl(q,s)),\bimpl(q,\band(r,s))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(\band(r,\bimpl(q,s)),\bimpl(q,\band(r,s))) \\ & \let{r = \bfalse} = & \bimpl(\band(\bfalse,\bimpl(q,s)),\bimpl(q,\band(\bfalse,s))) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-false-left} = & \bimpl(\bfalse,\bimpl(q,\band(\bfalse,s))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \btrue \end{eqnarray*}\] as claimed. If \(r = \btrue\), we have \[\begin{eqnarray*} & & \bimpl(\band(\bimpl(p,r),\bimpl(q,s)),\bimpl(\band(p,q),\band(r,s))) \\ & \let{p = \btrue} = & \bimpl(\band(\bimpl(\btrue,r),\bimpl(q,s)),\bimpl(\band(\btrue,q),\band(r,s))) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-left} = & \bimpl(\band(\bimpl(\btrue,r),\bimpl(q,s)),\bimpl(q,\band(r,s))) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(\band(r,\bimpl(q,s)),\bimpl(q,\band(r,s))) \\ & \let{r = \btrue} = & \bimpl(\band(\btrue,\bimpl(q,s)),\bimpl(q,\band(\btrue,s))) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-left} = & \bimpl(\bimpl(q,s),\bimpl(q,\band(\btrue,s))) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-left} = & \bimpl(\bimpl(q,s),\bimpl(q,s)) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-self} = & \btrue \end{eqnarray*}\] as claimed.
\(\bimpl\) interacts with \(\band\) and \(\bif{\ast}{\ast}{\ast}\).
Let \(p,q,r \in \bool\). If \(\bimpl(r,q)\), then \[\bif{\band(p,q)}{\btrue}{r} = \bif{p}{q}{r}.\]
If \(q = \btrue\) then \[\begin{eqnarray*} & & \bimpl(\bimpl(r,q),\beq(\bif{\band(p,q)}{\btrue}{r},\bif{p}{q}{r})) \\ & \let{q = \btrue} = & \bimpl(\bimpl(r,\btrue),\beq(\bif{\band(p,\btrue)}{\btrue}{r},\bif{p}{\btrue}{r})) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-conc} = & \bimpl(\btrue,\beq(\bif{\band(p,\btrue)}{\btrue}{r},\bif{p}{\btrue}{r})) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-right} = & \bimpl(\btrue,\beq(\bif{p}{\btrue}{r},\bif{p}{\btrue}{r})) \\ & \href{/posts/arithmetic-made-difficult/Testing.html#thm-eq-reflexive} = & \bimpl(\btrue,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \btrue \end{eqnarray*}\] as claimed. If \(q = \bfalse\) and \(r = \bfalse\), we have \[\begin{eqnarray*} & & \bimpl(\bimpl(r,q),\beq(\bif{\band(p,q)}{\btrue}{r},\bif{p}{q}{r})) \\ & \let{q = \bfalse} = & \bimpl(\bimpl(r,\bfalse),\beq(\bif{\band(p,\bfalse)}{\btrue}{r},\bif{p}{\bfalse}{r})) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-conc} = & \bimpl(\bnot(r),\beq(\bif{\band(p,\bfalse)}{\btrue}{r},\bif{p}{\bfalse}{r})) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-false-right} = & \bimpl(\bnot(r),\beq(\bif{\bfalse}{\btrue}{r},\bif{p}{\bfalse}{r})) \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-false} = & \bimpl(\bnot(r),\beq(r,\bif{p}{\bfalse}{r})) \\ & \let{r = \bfalse} = & \bimpl(\bnot(\bfalse),\beq(\bfalse,\bif{p}{\bfalse}{\bfalse})) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-false} = & \bimpl(\btrue,\beq(\bfalse,\bif{p}{\bfalse}{\bfalse})) \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#thm-if-same} = & \bimpl(\btrue,\beq(\bfalse,\bfalse)) \\ & \href{/posts/arithmetic-made-difficult/Testing.html#thm-eq-reflexive} = & \bimpl(\btrue,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \btrue \end{eqnarray*}\] as claimed. And if \(q = \bfalse\) and \(r = \btrue\), we have \[\begin{eqnarray*} & & \bimpl(\bimpl(r,q),\beq(\bif{\band(p,q)}{\btrue}{r},\bif{p}{q}{r})) \\ & \let{q = \bfalse} = & \bimpl(\bimpl(r,\bfalse),\beq(\bif{\band(p,\bfalse)}{\btrue}{r},\bif{p}{\bfalse}{r})) \\ & \let{r = \btrue} = & \bimpl(\bimpl(\btrue,\bfalse),\beq(\bif{\band(p,\bfalse)}{\btrue}{\btrue},\bif{p}{\bfalse}{\btrue})) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-true-hyp} = & \bimpl(\bfalse,\beq(\bif{\band(p,\bfalse)}{\btrue}{\btrue},\bif{p}{\bfalse}{\btrue})) \\ & \href{/posts/arithmetic-made-difficult/Implies.html#thm-implies-false-hyp} = & \btrue \end{eqnarray*}\] as claimed.
Testing
Suite:
_test_impl ::
( TypeName b, Boolean b, Arbitrary b, Show b, Equal b
) => b -> Int -> Int -> IO ()
_test_impl p size cases = do
testLabel1 "implies" p
let args = testArgs size cases
runTest args (_test_impl_or p)
runTest args (_test_impl_false_hyp p)
runTest args (_test_impl_false_conc p)
runTest args (_test_impl_true_hyp p)
runTest args (_test_impl_true_conc p)
runTest args (_test_impl_reflexive p)
runTest args (_test_impl_total p)
runTest args (_test_impl_antecedents_commute p)
runTest args (_test_impl_transitive p)
runTest args (_test_impl_distributive p)
runTest args (_test_impl_and_compatible p)
runTest args (_test_impl_and_if p)
Main: