# Or

Posted on 2018-01-17 by nbloomf

This post is literate Haskell; you can load the source into GHCi and play along.

{-# LANGUAGE NoImplicitPrelude #-}
module Or (
or, _test_or, main_or
) where

import Testing
import Booleans
import Not
import And

Finally, $$\bor$$.

We define $$\bor : \bool \rightarrow \bool \rightarrow \bool$$ by $\bor(p,q) = \bif{p}{\btrue}{\bif{q}{\btrue}{\bfalse}}.$

or :: (Boolean b) => b -> b -> b
or p q = ifThenElse p true (ifThenElse q true false)

We can compute $$\bor$$ explicitly.

We have $\begin{eqnarray*} \bor(\btrue,\btrue) & = & \btrue \\ \bor(\btrue,\bfalse) & = & \btrue \\ \bor(\bfalse,\btrue) & = & \btrue \\ \bor(\bfalse,\bfalse) & = & \bfalse. \end{eqnarray*}$

Note that $\begin{eqnarray*} & & \bor(\btrue,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#def-or} = & \bif{\btrue}{\btrue}{\bif{\btrue}{\btrue}{\bfalse}} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-true} = & \btrue \end{eqnarray*}$ that $\begin{eqnarray*} & & \bor(\btrue,\bfalse) \\ & \href{/posts/arithmetic-made-difficult/Or.html#def-or} = & \bif{\btrue}{\btrue}{\bif{\bfalse}{\btrue}{\bfalse}} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-true} = & \btrue \end{eqnarray*}$ that $\begin{eqnarray*} & & \bor(\bfalse,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#def-or} = & \bif{\bfalse}{\btrue}{\bif{\btrue}{\btrue}{\bfalse}} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-true} = & \bif{\bfalse}{\btrue}{\btrue} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-false} = & \btrue \end{eqnarray*}$ and that $\begin{eqnarray*} & & \bor(\bfalse,\bfalse) \\ & \href{/posts/arithmetic-made-difficult/Or.html#def-or} = & \bif{\bfalse}{\btrue}{\bif{\bfalse}{\btrue}{\bfalse}} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-false} = & \bif{\bfalse}{\btrue}{\bfalse} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-false} = & \bfalse \end{eqnarray*}$ as claimed.

_test_or_true_true :: (Boolean b, Equal b)
=> b -> Test Bool
_test_or_true_true p =
testName "or(true,true) == true" $eq (or true true) (true withTypeOf p) _test_or_true_false :: (Boolean b, Equal b) => b -> Test Bool _test_or_true_false p = testName "or(true,false) == true"$
eq (or true false) (true withTypeOf p)

_test_or_false_true :: (Boolean b, Equal b)
=> b -> Test Bool
_test_or_false_true p =
testName "or(false,true) == true" $eq (or false true) (true withTypeOf p) _test_or_false_false :: (Boolean b, Equal b) => b -> Test Bool _test_or_false_false p = testName "or(false,false) == false"$
eq (or false false) (false withTypeOf p)

$$\btrue$$ absorbs under $$\bor$$.

For all $$a \in \bool$$, we have $\bor(\btrue,a) = \bor(a,\btrue) = \btrue.$

If $$a = \btrue$$, we have $\begin{eqnarray*} & & \bor(\btrue,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-eval-true-true} = & \btrue \end{eqnarray*}$ and if $$a = \bfalse$$ we have $\begin{eqnarray*} & & \bor(\btrue,\bfalse) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-eval-true-false} = & \btrue \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-eval-false-true} = & \bor(\bfalse,\btrue) \end{eqnarray*}$ as claimed.

_test_or_true :: (Boolean b, Equal b)
=> b -> Test (b -> Bool)
_test_or_true b =
testName "or(true,p) == true" $\p -> eq (or true p) (true withTypeOf b) $$\bfalse$$ is neutral under $$\bor$$. For all $$a \in \bool$$, we have $\bor(\bfalse,a) = \bor(a,\bfalse) = a.$ If $$a = \btrue$$, we have $\begin{eqnarray*} & & \bor(\bfalse,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-eval-false-true} = & \btrue \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-eval-true-false} = & \bor(\btrue,\bfalse) \end{eqnarray*}$ and if $$a = \bfalse$$ we have $\begin{eqnarray*} & & \bor(\bfalse,\bfalse) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-eval-false-false} = & \bfalse \end{eqnarray*}$ as claimed. _test_or_false :: (Boolean b, Equal b) => b -> Test (b -> Bool) _test_or_false _ = testName "or(false,p) == p"$
\p -> eq (or false p) p

$$\bor$$ interacts with $$\bnot$$.

For all $$a \in \bool$$, we have $$\bor(p,\bnot(p)) = \btrue$$.

If $$a = \btrue$$, we have $\begin{eqnarray*} & & \bor(\btrue,\bnot(\btrue)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \btrue \end{eqnarray*}$ and if $$a = \bfalse$$ we have $\begin{eqnarray*} & & \bor(\bfalse,\bnot(\bfalse)) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-false} = & \bor(\bfalse,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-eval-false-true} = & \btrue \end{eqnarray*}$ as claimed.

_test_or_not :: (Boolean b, Equal b)
=> b -> Test (b -> Bool)
_test_or_not b =
testName "or(p,not(p)) == true" $\p -> eq (or p (not p)) (true withTypeOf b) $$\bor$$ is idempotent. For all $$a \in \bool$$, we have $$\bor(a,a) = a$$. If $$a = \btrue$$ we have $\begin{eqnarray*} & & \bor(\btrue,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-eval-true-true} = & \btrue \end{eqnarray*}$ and if $$a = \bfalse$$ then $\begin{eqnarray*} & & \bor(\bfalse,\bfalse) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-eval-false-false} = & \bfalse \end{eqnarray*}$ as claimed. _test_or_idempotent :: (Boolean b, Equal b) => b -> Test (b -> Bool) _test_or_idempotent _ = testName "or(p,p) == p"$
\p -> eq (or p p) p

$$\bor$$ is commutative.

For all $$a,b \in \bool$$, we have $$\bor(a,b) = \bor(b,a)$$.

If $$a = \btrue$$ we have $\begin{eqnarray*} & & \bor(\btrue,b) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \btrue \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-right} = & \bor(b,\btrue) \end{eqnarray*}$ and if $$a = \bfalse$$ we have $\begin{eqnarray*} & & \bor(\bfalse,b) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & b \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-right} = & \bor(b,\bfalse) \end{eqnarray*}$ as claimed.

_test_or_commutative :: (Boolean b, Equal b)
=> b -> Test (b -> b -> Bool)
_test_or_commutative _ =
testName "or(p,q) == or(q,p)" $\p q -> eq (or p q) (or q p) $$\bor$$ is associative. For all $$a,b,c \in \bool$$, we have $\bor(\bor(a,b),c) = \bor(a,\bor(b,c)).$ If $$a = \btrue$$ we have $\begin{eqnarray*} & & \bor(\bor(a,b),c) \\ & \let{a = \btrue} = & \bor(\bor(\btrue,b),c) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \bor(\btrue,c) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \btrue \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \bor(\btrue,\bor(b,c)) \end{eqnarray*}$ as claimed. If $$a = \bfalse$$, we have $\begin{eqnarray*} & & \bor(\bor(a,b),c) \\ & \let{a = \bfalse} = & \bor(\bor(\bfalse,b),c) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \bor(b,c) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \bor(\bfalse,\bor(b,c)) \end{eqnarray*}$ as claimed. _test_or_associative :: (Boolean b, Equal b) => b -> Test (b -> b -> b -> Bool) _test_or_associative _ = testName "or(or(p,q),r) == or(p,or(q,r))"$
\p q r -> eq (or (or p q) r) (or p (or q r))

DeMorganâ€™s laws hold for $$\bor$$, $$\band$$, and $$\bnot$$.

The following hold for all $$a,b,c \in \bool$$.

1. $$\bnot(\band(a,b)) = \bor(\bnot(a),\bnot(b))$$.
2. $$\bnot(\bor(a,b)) = \band(\bnot(a),\bnot(b))$$.
1. If $$a = \btrue$$, we have $\begin{eqnarray*} & & \bnot(\band(a,b)) \\ & \let{a = \btrue} = & \bnot(\band(\btrue,b)) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-left} = & \bnot(b) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \bor(\bfalse,\bnot(b)) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-true} = & \bor(\bnot(\btrue),\bnot(b)) \\ & \let{a = \btrue} = & \bor(\bnot(a),\bnot(b)) \end{eqnarray*}$ as claimed. If $$a = \bfalse$$, we have $\begin{eqnarray*} & & \bnot(\band(a,b)) \\ & \let{a = \bfalse} = & \bnot(\band(\bfalse,b)) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-false-left} = & \bnot(\bfalse) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-false} = & \btrue \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \bor(\btrue,\bnot(b)) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-false} = & \bor(\bnot(\bfalse),\bnot(b)) \\ & \let{a = \bfalse} = & \bor(\bnot(a),\bnot(b)) \end{eqnarray*}$ as claimed.
2. If $$a = \btrue$$, we have $\begin{eqnarray*} & & \bnot(\bor(a,b)) \\ & \let{a = \btrue} = & \bnot(\bor(\btrue,b)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \bnot(\btrue) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-true} = & \bfalse \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-false-left} = & \band(\bfalse,\bnot(b)) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-true} = & \band(\bnot(\btrue),\bnot(b)) \\ & \let{a = \btrue} = & \band(\bnot(a),\bnot(b)) \end{eqnarray*}$ as claimed. If $$b = \bfalse$$, we have $\begin{eqnarray*} & & \bnot(\bor(a,b)) \\ & \let{a = \bfalse} = & \bnot(\bor(\bfalse,b)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \bnot(b) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-left} = & \band(\btrue,\bnot(b)) \\ & \href{/posts/arithmetic-made-difficult/Not.html#thm-not-false} = & \band(\bnot(\bfalse),\bnot(b)) \\ & \let{a = \bfalse} = & \band(\bnot(a),\bnot(b)) \end{eqnarray*}$ as claimed.
_test_not_and :: (Boolean b, Equal b)
=> b -> Test (b -> b -> Bool)
_test_not_and _ =
testName "not(and(p,q)) == or(not(p),not(q))" $\p q -> eq (not (and p q)) (or (not p) (not q)) _test_not_or :: (Boolean b, Equal b) => b -> Test (b -> b -> Bool) _test_not_or _ = testName "not(or(p,q)) == and(not(p),not(q))"$
\p q -> eq (not (or p q)) (and (not p) (not q))

$$\band$$ and $$\bor$$ distribute over each other.

The following hold for all $$a,b,c \in \bool$$.

1. $$\band(a,\bor(b,c)) = \bor(\band(a,b),\band(a,c))$$.
2. $$\bor(a,\band(b,c)) = \band(\bor(a,b),\bor(a,c))$$.
1. If $$a = \btrue$$, we have $\begin{eqnarray*} & & \band(a,\bor(b,c)) \\ & \let{a = \btrue} = & \band(\btrue,\bor(b,c)) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-left} = & \bor(b,c) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-left} = & \bor(\band(\btrue,b),c) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-true-left} = & \bor(\band(\btrue,b),\band(\btrue,c)) \\ & \let{a = \btrue} = & \bor(\band(a,b),\band(a,c)) \end{eqnarray*}$ as claimed. If $$a = \bfalse$$, we have $\begin{eqnarray*} & & \band(a,\bor(b,c)) \\ & \let{a = \bfalse} = & \band(\bfalse,\bor(b,c)) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-false-left} = & \bfalse \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \bor(\bfalse,\bfalse) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-false-left} = & \bor(\band(\bfalse,b),\bfalse) \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-false-left} = & \bor(\band(\bfalse,b),\band(\bfalse,c)) \\ & \let{a = \bfalse} = & \bor(\band(a,b),\band(a,c)) \end{eqnarray*}$ as claimed.
2. If $$a = \btrue$$, we have $\begin{eqnarray*} & & \bor(a,\band(b,c)) \\ & \let{a = \btrue} = & \bor(\btrue,\band(b,c)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \btrue \\ & \href{/posts/arithmetic-made-difficult/And.html#thm-and-eval-true-true} = & \band(\btrue,\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \band(\bor(\btrue,b),\btrue) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \band(\bor(\btrue,b),\bor(\btrue,c)) \\ & \let{a = \btrue} = & \band(\bor(a,b),\bor(a,c)) \end{eqnarray*}$ as claimed. If $$a = \bfalse$$, we have $\begin{eqnarray*} & & \bor(a,\band(b,c)) \\ & \let{a = \bfalse} = & \bor(\bfalse,\band(b,c)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \band(b,c) \\ & = & \band(b,\bor(\bfalse,c)) \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \band(\bor(\bfalse,b),\bor(\bfalse,c)) \\ & \let{a = \bfalse} = & \band(\bor(a,b),\bor(a,c)) \end{eqnarray*}$ as claimed.
_test_and_or :: (Boolean b, Equal b)
=> b -> Test (b -> b -> b -> Bool)
_test_and_or _ =
testName "and(p,or(q,r)) == or(and(p,q),and(p,r))" $\p q r -> eq (and p (or q r)) (or (and p q) (and p r)) _test_or_and :: (Boolean b, Equal b) => b -> Test (b -> b -> b -> Bool) _test_or_and _ = testName "or(p,and(q,r)) == and(or(p,q),or(p,r))"$
\p q r -> eq (or p (and q r)) (and (or p q) (or p r))

$$\bif{\ast}{\ast}{\ast}$$ on booleans is equivalent to an or.

If $$p,q \in \bool$$, we have $\bif{p}{\btrue}{q} = \bor(p,q).$

If $$p = \btrue$$, we have $\begin{eqnarray*} & & \bif{\btrue}{\btrue}{q} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-true} = & \btrue \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \bor(\btrue,q) \end{eqnarray*}$ and if $p = we have $\begin{eqnarray*} & & \bif{\bfalse}{\btrue}{q} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-false} = & q \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \bor(\bfalse,q) \end{eqnarray*}$ as needed. _test_if_or :: (Equal a) => a -> Test (Bool -> Bool -> Bool) _test_if_or _ = testName "if(p,true,q) == or(p,q)"$
\p q -> eq (if p then true else q) (or p q)

$$\bif{\ast}{\ast}{\ast}$$ interacts with $$\bor$$.

Let $$A$$ be a set with $$a,b \in A$$, and let $$p,q \in \bool$$. Then we have $\bif{p}{a}{\bif{q}{a}{b}} = \bif{\bor(p,q)}{a}{b}.$

If $$p = \btrue$$, we have $\begin{eqnarray*} & & \bif{\bor(p,q)}{a}{b} \\ & \let{p = \btrue} = & \bif{\bor(\btrue,q)}{a}{b} \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-true-left} = & \bif{\btrue}{a}{b} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-true} = & a \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-true} = & \bif{\btrue}{a}{\bif{q}{a}{b}} \\ & \let{p = \btrue} = & \bif{p}{a}{\bif{q}{a}{b}} \end{eqnarray*}$ as needed, and if $$p = \bfalse$$ we have $\begin{eqnarray*} & & \bif{\bor(p,q)}{a}{b} \\ & \let{p = \bfalse} = & \bif{\bor(\bfalse,q)}{a}{b} \\ & \href{/posts/arithmetic-made-difficult/Or.html#thm-or-false-left} = & \bif{q}{a}{b} \\ & \href{/posts/arithmetic-made-difficult/Booleans.html#cor-if-false} = & \bif{\bfalse}{a}{\bif{q}{a}{b}} \\ & \let{p = \bfalse} = & \bif{p}{a}{\bif{q}{a}{b}} \end{eqnarray*}$ as needed.

_test_if_or_nest :: (Equal a)
=> a -> Test (a -> a -> Bool -> Bool -> Bool)
_test_if_or_nest _ =
testName "if(or(p,q),a,b) == if(p,a,if(q,a,b))" \$
\a b p q -> eq
(if or p q then a else b)
(if p then a else if q then a else b)

## Testing

Suite:

_test_or ::
( Equal a, Arbitrary a, CoArbitrary a, Show a, TypeName a
, Boolean b, Arbitrary b, Show b, Equal b, TypeName b
)
=> b -> a -> Int -> Int -> IO ()
_test_or p x size cases = do
testLabel2 "or" p x

let args = testArgs size cases

runTest args (_test_or_true_true p)
runTest args (_test_or_true_false p)
runTest args (_test_or_false_true p)
runTest args (_test_or_false_false p)

runTest args (_test_or_true p)
runTest args (_test_or_false p)
runTest args (_test_or_not p)
runTest args (_test_or_idempotent p)
runTest args (_test_or_commutative p)
runTest args (_test_or_associative p)

runTest args (_test_not_and p)
runTest args (_test_not_or p)
runTest args (_test_and_or p)
runTest args (_test_or_and p)

runTest args (_test_if_or x)
runTest args (_test_if_or_nest x)

Main:

main_or :: IO ()
main_or = _test_or (true :: Bool) (true :: Bool) 20 100